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Abstract. Using an auxiliary memory smaller than the size of this ab-
stract, the LogLog algorithm makes it possible to estimate in a single
pass and within a few percents the number of different words in the
whole of Shakespeare’s works. In general the LogLog algorithm makes
use of m “small bytes” of auxiliary memory in order to estimate in a
single pass the number of distinct elements (the “cardinality”) in a file,
and it does so with an accuracy that is of the order of 1/

√
m. The “small

bytes” to be used in order to count cardinalities till Nmax comprise about
log log Nmax bits, so that cardinalities well in the range of billions can be
determined using one or two kilobytes of memory only. The basic version
of the LogLog algorithm is validated by a complete analysis. An opti-
mized version, super–LogLog, is also engineered and tested on real-life
data. The algorithm parallelizes optimally.

1 Introduction

The problem addressed in this note is that of determining the number of distinct
elements, also called the cardinality, of a large file. This problem arises in several
areas of data-mining, database query optimization, and the analysis of traffic in
routers. In such contexts, the data may be either too large to fit at once in core
memory or even too massive to be stored, being a huge continuous flow of data
packets. For instance, Estan et al. [3] report traces of packet headers, produced
at a rate of 0.5GB per hour of compressed data (!), which were collected while
trying to trace a “worm” (Code Red, August 1 to 12, 2001), and on which it
was necessary to count the number of distinct sources passing through the link.
We propose here the LogLog algorithm that estimates cardinalities using only
a very small amount of auxiliary memory, namely m memory units, where a
memory unit, a “small byte”, comprises close to log log Nmax bits, with Nmax
an a priori upperbound on cardinalities. The estimate is (in the sense of mean
values) asymptotically unbiased ; the relative accuracy of the estimate (measured
by a standard deviation) is close to 1.05/

√
m for our best version of the algo-

rithm, Super–LogLog. For instance, estimating cardinalities till Nmax = 227 (a
hundred million different records) can be achieved with m = 2048 memory units
of 5 bits each, which corresponds to 1.28 kilobytes of auxiliary storage in total,
the error observed being typically less than 2.5%. Since the algorithm operates
incrementally and in a single pass it can be applied to data flows for which it
provides on-line estimates available at any given time. Advantage can be taken
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of the low memory consumption in order to gather simultaneously a very large
number of statistics on huge heterogeneous data sets. The LogLog algorithm
can also be fully distributed or parallelized, with optimum speed-up and mini-
mal interprocess communication. Finally, an embedded hardware design would
involve strictly minimal resources.

Motivations. A traditional application of cardinality estimates is database
query optimization. There, a complex query typically involves a variety of set-
theoretic operations as well as projections, joints, and so on. In this context,
knowing “for free” cardinalities of associated sets provides a valuable guide for
selecting an efficient processing strategy best suited to the data at hand. Even a
problem as simple as merging two large files with duplicates can be treated by
various combinations of sorting, straight merging, and filtering out duplicates
(in one or both of the files); the cost function of each possible strategy is then
determined by the number of records as well as by the cardinality of each file.
Probabilistic estimation algorithms also find a use in large data recording and
warehousing environments. There, the goal is to provide an approximate response
in time that is orders-of-magnitude less than what computing an exact answer
would require: see the description of the Aqua Project by Gibbons et al. in [8].

The analysis of traffic in routers, as already mentioned, benefits greatly of
cardinality estimators—this is lucidly exposed by Estan et al. in [2,3]. Certain
types of attacks (“denial of service” and “port scans”) are betrayed by alarmingly
high counts of certain characteristic events in routers. In such situations, there is
usually not enough resource available to store and search on-line the very large
number of events that take place even in a relatively small time window.

Probabilistic counting algorithms can also be used within other algorithms
whenever the final answer is the cardinality of a large set and a small tolerance
on the quality of the answer is acceptable. Palmer et al. [13] describe the use of
such algorithms in an extensive connectivity analysis of the internet topology.
For instance, one of the tasks needed there is to determine, for each distance h,
the number of pairs of nodes that are at distance at most h in the internet graph.
Since the graph studied by [13] has close to 300,000 nodes, the number of pairs
to be considered is well over 1010, upon which costly list operations must be
performed by exact algorithms. In contrast an algorithm that would be, in the
abstract, suboptimal can be coupled with adapted probabilistic counting tech-
niques and still provide reliable estimates. In this way, the authors of [13] were
able to extract extensive metric information on the internet graph by keeping a
reduced collection of data that reside in core memory. They report a reduction
in run-time by a factor of more than 400.

Algorithms. The LogLog algorithm is probabilistic. Like in many similar
algorithms, the first idea is to appeal to a hashing function in order to randomize
data and bring them to a form that resembles random (uniform, independent)
binary data. It is this hashed data set that is distilled into cardinality estimates
by the algorithm. Various algorithms perform various tests on the hashed data
set, then compare “observables” to what probabilistic analysis predicts, and
finally “deduce” a plausible value of the parameter of interest. In the case of
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The LogLog Algorithm with m = 256 condenses the whole of Shakespeare’s works
to a table of 256 “small bytes” of 4 bits each. The estimate of the number of distinct
words is here n◦ = 30897 (true answer: n = 28239), i.e., a relative error of +9.4%.

LogLog counting, the observable should only be linked to cardinality, and hence
be totally independent of the nature of replications and the ordering of data
present in the file, on which no information at all is available. (Depending on
context, collisions due to hashing can either be neglected or their effect can be
estimated and corrected.)

Whang, Zanden, and Taylor [16] have developed Linear Counting, which dis-
tributes (hashed) values into buckets and only keeps a bitmap indicating which
buckets are hit. Then observing the number of hits in the table leads to an es-
timate of cardinality. Since the number of buckets should not be much smaller
than the cardinalities to be estimated (say, ≥ Nmax/10), the algorithm has space
complexity that is O(Nmax) (typically, Nmax/10 bits of storage). The linear space
is a drawback whenever large cardinalities, multiple counts, or limited hardware
are the rule. Estan, Varghese, and Fisk [3] have devised a multiscale version of
this principle, where a hierarchical collection of small windows on the bitmap
is kept. From simulation data, their Multiresolution Bitmap algorithm appears
to be about 20% more accurate than Probabilistic Counting (discussed below)
when the same amount of memory is used. The best algorithm of [3] for flows
in routers, Adaptive Bitmap, is reported to be about 3 times more efficient than
either Probabilistic Counting or Multiresolution Bitmap, but it has the dis-
advantage of not being universal, as it makes definite statistical assumptions
(“stationarity”) regarding the data input to the algorithm. (We recommend the
thorough engineering discussion of [3].)

Closer to us is the Probabilistic Counting algorithm of Flajolet and Mar-
tin [7]. This uses a certain observable that has excellent statistical properties
but is relatively costly to maintain in terms of storage. Indeed, Probabilistic
Counting estimates cardinalities with an error close to 0.78/

√
m given a table

of m “words”, each of size about log2 Nmax.
Yet another possible idea is sampling. One may use any filter on hashed

values with selectivity p � 1, store exactly and without duplicates the data
items filtered and return as estimate 1/p times the corresponding cardinality.
Wegner’s Adaptive Sampling (described and analyzed in [5]) is an elegant way
to maintain dynamically varying values of p. For m “words” of memory (where
here “word” refers to the space needed by a data item), the accuracy is about
1.20/

√
m, which is about 50% less efficient than Probabilistic Counting.

An insightful complexity-theoretic discussion of approximate counting is pro-
vided by Alon, Matias, and Szegedy in [1]. The authors discuss a class of
“frequency–moments” statistics which includes ours (as their F0 statistics). Our
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LogLog Algorithm has principles that evoke some of those found in the inter-
section of [1] and the earlier [7], but contrary to [1], we develop here a complete
eminently practical algorithmic solution and provide a very precise analysis,
including bias correction, error and risk evaluation, as well as complete dimen-
sioning rules.

We estimate that our LogLog algorithm outperforms the earlier Probabilis-
tic Counting algorithm and the similarly performing Multiresolution Bitmap
of [3] by a factor of 3 at least as it replaces “words” (of 16 to 32 bits) by “small
bytes” of typically 5 bits each, while being based on an observable that has
only slightly higher dispersion than the other two algorithms—this is expressed
by our two formulæ 1.30/

√
m (LogLog) and 1.05/

√
m (super–LogLog). This

places our algorithm in the same category as Adaptive Bitmap of [3]. However,
compared to Adaptive Bitmap, the LogLog algorithm has the great advantage
of being universal as it makes no assumptions on the statistical regularity of
data. We thus believe LogLog and its improved version Super–LogLog to be
the best general-purpose algorithmic solution currently known to the problem
of estimating large cardinalities.
Note. The following related references were kindly suggested by a referee: Cormode et
al., in VLDB–2002 (a new counting method based on stable laws) and Bar-Yossef et
al., SODA–2002 (a new application to counting triangles in graphs).

2 The Basic LogLog Algorithm

In computing practice, one deals with a multiset of data items, each belonging to
a discrete universe U . For instance, in the case of natural text, U may be the set
of all alphabetic strings of length ≤ 28 (‘antidisestablishmentarianism’), double
floats represented on 64 bits, and so on. A multiset M of elements of U is given
and the problem is to estimate its cardinality, that is, the number of distinct
elements it comprises. Here is the principle of the basic LogLog algorithm.

Algorithm LogLog(M: Multiset of hashed values; m ≡ 2k)
Initialize M (1), . . . , M (m) to 0;
let ρ(y) be the rank of first 1-bit from the left in y;

for x = b1b2 · · · ∈ M do
set j := 〈b1 · · · bk〉2 (value of first k bits in base 2)
set M (j) := max(M (j), ρ(bk+1bk+2 · · · );

return E := αmm2
1
m

∑
j M (j)

as cardinality estimate.

We assume throughout that a hash function, h, is available that transforms
elements of U into sufficiently long binary strings, in such a way that bits com-
posing the hashed value closely resemble random uniform independent bits. This
pragmatic attitude1 is justified by Knuth who writes in [10]: “It is theoretically
1 The more theoretically inclined reader may prefer to draw h at random from a family

of universal hash functions; see, e.g., the general discussion in [12] and the specific [1].
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impossible to define a hash function that creates random data from non-random
data in actual files. But in practice it is not difficult to produce a pretty good im-
itation of random data.” Given this, we formalize our basic problem as follows.

Take U = {0, 1}∞ as the universe of data endowed with the uniform (prod-
uct) probability distribution. An ideal multiset M of cardinality n is a ran-
dom object that is produced by first drawing an n-sequence independently
at random from U , then replicating elements in an arbitrary way, and finally,
applying an arbitrary permutation.
The user is provided with the (extremely large) ideal multiset M and its goal
is to estimate the (unknown to him) value of n at a small computational cost.
No information is available, hence no statistical assumption can be made,
regarding the behaviour of the replicator-shuffler daemon.

(The fact that we consider infinite data is a convenient abstraction at this stage;
we discuss its effect, together with needed adjustments, in Section 5 below.)

The basic idea consists in scanning M and observing the patterns of the form
0�1 that occur at the beginning of (hashed) records. For a string x ∈ {0, 1}∞,
let ρ(x) denote the position of its first 1-bit. Thus ρ(1 · · · ) = 1, ρ(001 · · · ) = 3,
etc. Clearly, we expect about n/2k amongst the distinct elements of M to have
a ρ-value equal to k. In other words, the quantity,

R(M) := max
x∈M

ρ(x),

can reasonably be hoped to provide a rough indication on the value of log2 n. It
is an “observable” in the sense above since it is totally independent of the order
and the replication structure of the multiset M. In fact, in probabilistic terms,
the quantity R is precisely distributed in the same way as 1 plus the maximum
of n independent geometric variables of parameter 1

2 . This is an extensively
researched subject; see, e.g., [14]. It turns out that R estimates log2 n with an
additive bias of 1.33 and a standard deviation of 1.87. Thus, in a sense, the
observed value of R estimates “logarithmically” n within ±1.87 binary orders
of magnitude. Notice however that the expectation of 2R is infinite so that 2R

cannot in fact be used to estimate n.
The next idea consists in separating elements into m groups also called “buck-

ets”, where m is a design parameter. With m = 2k, this is easily done by using
the first k bits of x as representing in binary the index of a bucket. One can
then compute the parameter R on each bucket, after discarding the first k bits.
If M (j) is the (random) value of parameter R on bucket number j, then the
arithmetic mean 1

m

∑m
j=1 M (j), can legitimately be expected to approximate

log2(n/m) plus an additive bias. The estimate of n returned by the LogLog

algorithm is accordingly
E := αmm2

1
m

∑
M(j)

. (1)
The constant αm comes out of our later analysis as αm :=
(
Γ (−1/m) 1−21/m

log 2

)−m

, where Γ (s) := 1
s

∫ ∞
0 e−tts dt. It precisely corrects

the systematic bias of the raw arithmetic mean in the asymptotic limit. One
may also hope for a greater concentration of the estimates, hence better
accuracy, to result from averaging over m 	 1 values. The main characteristics
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of the algorithm are summarized below in Theorem 1. The letters E, V denote
expectation and variance, and the subscript n indicates the cardinality of the
underlying random multiset.

Theorem 1. Consider the basic LogLog algorithm applied to an ideal multi-
set of (unknown) cardinality n and let E be the estimated value of cardinality
returned by the algorithm.

(i) The estimate E is asymptotically unbiased in the sense that, as n → ∞,
1
n

En(E) = 1 + θ1,n + o(1), where |θ1,n| < 10−6.

(ii) The standard error defined as 1
n

√
Vn(E) satisfies as n → ∞,

1
n

√
Vn(E) =

βm√
m

+ θ2,n + o(1), where |θ2,n| < 10−6.

One has: β128
.= 1.30540, β∞ =

√
1
12 log2 2 + 1

6π2 .= 1.29806.

In summary, apart from completely negligible fluctuations whose amplitude is
less than 10−6, the algorithm provides asymptotically a valid estimator of n. The
standard error, which measures in a mean-quadratic sense and in proportion to n
the deviations to be expected, is closely approximated by the formula2

Standard error ≈ 1.30√
m

.

For instance, m = 256 and m = 1024 give a standard error of 8% and 4%
respectively. (These figures are compatible with what was obtained on the
Shakespeare data.) Observe also that αm ∼ α∞ − (2π2 + log2 2)/(48m), where
α∞ = e−γ

√
2/2 .= 0.39701 (γ is Euler’s constant), so that, in practical imple-

mentations, αm can be replaced by α∞ without much detectable bias as soon as
m ≥ 64.

The proof of Theorem 1 will occupy the whole of the next section.

3 The Basic Analysis

Throughout this note, the unknown number of distinct values in the data set is
denoted by n. The LogLog algorithm provides an estimator, E, of n. We first
provide formulæ for the expectation and variance of E. Asymptotic analysis
is performed next: The Poissonization paragraph introduces the Poisson model
where n is allowed to vary according to a Poisson law, while the Depoissoniza-
tion paragraph shows the Poisson model to be asymptotically equivalent to the
“fixed–n” model that we need. The expected value of the estimator is found to
be asymptotically n, up to minute fluctuations. This establishes the asymptot-
ically unbiased character of the algorithm as asserted in (i) of Theorem 1. The
standard deviation of the estimator is also proved to be of the order of n with
the proportionality coefficient providing the value of the standard error, hence
the accuracy of the algorithm, as asserted in (ii) of Theorem 1.
2 We use ‘∼’ to denote asymptotic expansions in the usual mathematical sense and

reserve the informal ‘≈’ for “approximately equal”.
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Fig. 1. The distribution of observed register values for the Pi file, n ≈ 2 · 107 with
m = 1024 [left]; the distribution Pν(M = k) of a register M , for ν = 2 · 104 [right].

We start by examining what happens in a bucket that receives ν elements
(Figure 1). The random variable M is, we recall, the maximum of ν random
variables that are independent and geometrically distributed according to P(Y ≥
k) = 1

2k−1 . Consequently, the probability distribution of M is characterized
by Pν(M ≤ k) =

(
1 − 1

2k

)ν , so that Pν(M = k) =
(
1 − 1

2k

)ν − (
1 − 1

2k−1

)ν .
The bivariate (exponential) generating function of this family of probability
distributions as ν varies is then

G(z, u) :=
∑

ν,k

Pν(M = k)uk zν

ν!
. =

∑

k

uk
(
ez(1−1/2k) − ez(1−1/2k−1)

)
, (2)

as shown by a simple calculation. The starting point of the analysis is an expres-
sion in terms of G of the mean and variance of Z := E/αm ≡ m2

1
m

∑
j M(j)

, which
is the unnormalized version of the estimator E. With the expression [zn]f(z) rep-
resenting the coefficient of zn in the power series f(z), we state:

Lemma 1. The expected value and variance of the unnormalized estimator Z
are En(Z) = mn![zn]G

(
z
m , 21/m

)m
, and

Vn(Z) = m2n![zn]
(
G

(
z
m , 22/m

))m −
(
mn![zn]G

(
z
m , 21/m

)m
)2

Proof. The multinomial convolution relations corresponding to mth powers of
generating functions imply that n![zn]G(z/m, u)m is the probability generating
function of

∑
j M (j). (The multinomials enumerate all ways of distributing ele-

ments amongst buckets.) The expressions for the first and second moment of Z
are obtained from there by substituting u �→ 21/m and u �→ 22/m.
Proving Theorem 1 is reduced to estimating asymptotically these quantities.

Poissonization. We “poissonize” the problem of computing the expected value
and the variance. In this way, calculations take advantage of powerful properties
of the Mellin transform. The Poisson law of rate λ is the law of a random
variable X such that P(X = 
) = e−λ λ�

�! . Given a class Ms of probabilistic
models indexed by integers s, poissonizing means considering the “supermodel”
where model Ms is chosen according to a Poisson law of rate λ. Since the
poisson model of a large parameter λ is predominantly a mixture of models Ms

with s near λ (the Poisson law is “concentrated” near its mean), one can expect



612 M. Durand and P. Flajolet

properties of the fixed-n model Mn to be reflected by corresponding properties
of the Poisson model taken with rate λ = n.

A useful feature is that expressions of moments and probabilities under the
Poisson model are closely related to exponential generating functions of the
fixed-n models. This owes to the fact that if f(z) =

∑
n fnzn/n! is the expo-

nential generating function of expectations of a parameter, then the quantity
e−λf(λ) =

∑
n fne−λ λn

n! gives the corresponding expectation under the Pois-
son model. In this way, one sees that the quantities En = mG

(
n
m , 21/m

)m
e−n

and Vn = m2G
(

n
m , 22/m

)m
e−n −

(
mG

(
n
m , 21/m

)m
e−n

)2
are respectively the

mean and variance of Z when the cardinality of the underlying multiset obeys
a Poisson law of rate λ = n.

Lemma 2. The Poisson mean and variance En and Vn satisfy as n → ∞:

En ∼
[(

Γ (−1/m)
1 − 21/m

log 2

)m

+ εn

]

· n

Vn ∼
[(

Γ (−2/m)
1 − 22/m

log 2

)m

−
(

Γ (−1/m)
1 − 2−1/m

log 2

)2m

+ ηn

]

· n2.

where |εn| and |ηn| are bounded by 10−6.

The proof crucially relies on the Mellin transform [6].

Depoissonization. Finally, the asymptotic forms of the first two moments
of the LogLog estimator can be transferred back from the Poisson model to
the fixed-n model that underlies Theorem 1. The process involved is known as
“depoissonization”. Various options are discussed in Chapter 10 of Szpankowski’s
book [15]. We choose the method called “analytic depoissonization” by Jacquet
and Szpankowski, whose underlying engine is the saddle point method applied to
Cauchy integrals; see [9,15]. In essence, the values of an exponential generating
function at large arguments are closely related to the asymptotic form of its
coefficients provided the generating function decays fast enough away from the
positive real axis in the complex plane. The complete proof is omitted.

Lemma 3. The first two moments of the LogLog estimator are asymptotically
equivalent under the Poisson and fixed–n model: En(Z) ∼ En, and Vn(Z) ∼ Vn.
Lemmas 2 and 3 together prove Theorem 1. Easy numerical calculations and
straight asymptotic analysis of βm conclude the evaluations stated there.

4 Space Requirements

Now that the correctness—the absence of bias as well as accuracy—of the basic
LogLog algorithm has been established, there remains to see that it performs
as promised and only consumes O(log log n) bits of storage if counts till n are
needed3.
3 A counting algorithm exhibiting a log-log feature in a different context is Morris’s

Approximate Counting [11] analyzed in [4].
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In its abstract form of Section 1, the LogLog algorithm operates with po-
tentially unbounded integer registers and it consumes m of these. What we call
an 
–restricted algorithm is one in which each of the M (j) registers is made of 

bits, that is, it can store any integer between 0 and 2� − 1. We state a shallow
result only meant to phrase mathematically the log-log property of the basic
space complexity:

Theorem 2. Let ω(n) be a function that tends to infinity arbitrarily slowly and
consider the function 
(n) = log2 log2

(
n
m

)
+ ω(n). Then, the 
(n)–restricted

algorithm and the LogLog algorithm provide the same output with probability
tending to 1 as n tends to infinity.

The auxiliary tables maintained by the algorithm then comprise m “small bytes”,
each of size 
(n). In other words, the total space required by the algorithm in
order to count till n is m log2 log2

(
n
m

)
(1 + o(1)) . The hashing function needs

to hash values from the original data universe onto exactly 2�(n) + log2 m bits.
Observe also that, whenever no discrepancy is present at the value n itself, the
restricted algorithm automatically provides the right answer for all values n′ ≤ n.

The proof of this theorem results from tail properties of the multinomial
distributions and of maxima of geometric random variables.

Assume for instance that we wish to count cardinalities till 227, that is, over
a hundred million, with an accuracy of about 4%. By Theorem 1, one should
adopt m = 1024 = 210. Then, each bucket is visited roughly n/m = 217 times.
One has log2 log2 217 .= 4.09. Adopt ω = 0.91, so that each register has a size
of 
 = 5 bits, i.e., a value less than 32. Applying the upperbound of the overall
probability failure shows that an 
–restriction will have little incidence on the
result: the probability of a discrepancy4 is lower than 12%. In summary: The
basic LogLog counting algorithm makes it possible to estimate cardinalities
till 108 with a standard error of 4% using 1024 registers of 5 bits each, that is,
a table of 640 bytes in total.

5 Algorithmic Engineering

In this section, we describe a concrete implementation of the LogLog algorithm
that incorporates the probabilistic principles seen in previous sections. At the
same time, we propose an optimization that has several beneficial effects: (i) it
increases at no extra cost the accuracy of the results, i.e., it decreases the disper-
sion of the estimates around the mean value; (ii) it allows for the use of smaller
register values, thereby improving the storage utilization of the algorithm and
nullifying the effect of length restriction discussed in Section 4.

The fundamental probability distribution is that of the value of the M–
register in a bucket that receives ν elements (where ν ≈ n/m). This is the
4 In addition, a correction factor, calculated according to the principles of Section 3,

could easily be built into the algorithm, in order to compensate the small bias induced
by restriction
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Fig. 2. The evolution of the estimate (divided by the current value of n) provided by
super–LogLog on all of Shakespeare’s works: (left) words; (right) pairs of consecutive
words. Here m = 256 (standard error=6.5%).

maximum of ν geometric random variables with mean close to log2 n. The
tails of this distribution, though exponential, are still relatively “soft”, as there
holds Pν(M > log2 ν + k) ≈ 2−k. Since the estimate returned involves an expo-
nential of the arithmetic mean of bucket registers, a few exceptional values may
still distort the estimate produced by the algorithm, while more tame data will
not induce this effect. Altogether, this phenomenon lies at the origin of a natural
dispersion of estimates produced by the algorithm, hence it places a limit on the
accuracy of cardinality estimates. A simple remedy to the situation consists in
using truncation:

Truncation Rule. When collecting register values in order to produce the
final estimate, retain only the m0 := �θ0m� smallest values and discard the
rest. There θ0 is a real number between 0 and 1, with θ0 = 0.7 producing
near-optimal results. The mean of these registers is computed and the esti-
mate returned is m0α̃m2

1
m0

∑� M(j)

, where Σ� indicates the truncated sum.
The modified constant α̃m ensures that the algorithm remains unbiased.

When the truncation rule is applied, accuracy does increase. An empirically
determined formula for the standard error is 1.05√

m
, when the Truncation Rule

with θ0 = 0.7 is employed.
Empirical studies justify the fact that register values may be ceiled at the

value �log2
(

n
m

)� + δ, without detectable effect for δ = 3. In other words, one
may freely combine the algorithm with restriction as follows:

Restriction Rule. Use register values that are in the interval [0 . .B], where⌈
log2

(
Nmax

m

)
+ 3

⌉ ≤ B.

For instance for the data at the end of Section 4, with n = 227, m = 1024,
the value B = 20 (encoded on 5 bits) is sufficient. But now, the probability that
length-restriction affects the estimate of the algorithm drops tremendously.

Fact 1. Combining the basic LogLog counting algorithm, the Trun-
cation Rule and the Restriction Rule yields the super-LogLog al-
gorithm that estimates cardinalities with a standard error of ≈
1.05√

m
when m “small bytes” are used. Here a small byte has size

⌈
log2

⌈
log2

(
Nmax

m

)
+ 3

⌉⌉
, that is, 5 bits for maximum cardinalities Nmax

well over 108.
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Length of the hash function and collisions. The length H of the hash
function—how many bits should it produce?— is guided by previous consid-
erations. There must be log2 m bits reserved for bucketing and the bound on
register values should be at least as large as the quantity B above. Accordingly
this value H must satisfy: H ≥ H0, where H0 := log2 m +

⌈
log2

(
Nmax

m

)
+ 3

⌉
. In

case a value too close to H0 is adopted (say 0 ≤ H − H0 ≤ 3), then the effect
of hashing collisions must be compensated for. This is achieved by inverting the
function that gives the expected value of the number of collisions in a hash table
(see [3,16] for an analogous discussion). The estimator is then to be changed
into −2H log

(
1 − α̃mm

2H 2
1
m

∑� M(j)
)

. (No detectable degradation of performance
results from the last modification of the estimator function, and it can safely be
used in all cases.)

Risk analysis. For the pure LogLog algorithm, the estimate is an empirical
mean of random variables that are approximately identically distributed (up
to statistical fluctuations in bucket sizes). From there, it can be proved that
the quantity 1

m

∑
j M (j) is numerically closely approximated by a Gaussian.

Consequently, the estimate returned is very roughly Gaussian: at any rate, it
has exponentially decaying tails. (In principle, a full analysis would be feasible.)
A similar property is expected for the super-LogLog algorithm since it is based
on the same principles. As a consequence, we obtain the following pragmatic
conclusion:

Fact 2. Let σ := 1.05√
m

. The estimate is within σ, 2σ, and 3σ of the exact
value of the cardinality n in respectively 65%, 95%, and 99% of the cases.

6 Conclusions

That super–LogLog performs quite well in practice is confirmed by the following
data from simulations:

k = log2 m 4 5 6 7 8 9 10 11 12
σ� 29.5 19.8 13.8 9.4 6.5 4.5 3.1 2.2 1.5

1.05/
√

m 26.3 18.6 13.1 9.3 6.5 4.6 3.3 2.3 1.6
Random 22 16 11 8 6 4 3 2.3 2
KingLear 8.2 1.6 2.1 3.9 2.9 1.2 0.3 1.7 —

ShAll 2.9 13.9 4.4 0.9 9.4 4.1 3.0 0.8 0.6
Pi 67 28 9.7 8.6 2.8 5.1 1.9 1.2 0.7

Note. σ� refers to standard error as estimated from extensive simulations, to be
compared to the empirical formula 1.05/

√
m. The next lines display the absolute

value of the relative error measured. Random refers to averages over 10,000 runs
with n = 20, 000; the other data are single runs: Pi is formed of 2 · 107 records
that are consecutive 10–digit slices of the first 200 million decimals of π; ShAll
is the whole of Shakespeare’s works. KingLear is what its name says. (Naturally,
inherent stochastic fluctuations prevent the estimates from always depending
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monotonically on memory size (m) in the case of single runs on a given piece of
data.)

As we have strived to demonstrate, the LogLog algorithm in its optimized
version performs quite well. The following table (grossly) summarizes the accu-
racy (measured by standard error σ) in relation to the storage used for the major
methods known. Note that different algorithms operate with different memory
units.

Algorithm Std. Err. (σ) Memory units n = 108, σ = 0.02

Adaptive Sampling 1.20/
√

m Records (≥24–bit words) 10.8 kbytes

Prob. Counting 0.78/
√

m Words (24–32 bits) 6.0 kbytes

Multires. Bitmap ≈ 4.4/
√

m Bits 4.8 kbytes

LogLog 1.30/
√

m “Small bytes” (5 bits) 2.1 kbytes

Super-LogLog 1.05/
√

m “Small bytes” (5 bits) 1.7 kbytes

The last column is a rough indication of the storage requirement for an accuracy
of 2% and a file of cardinality 108. (The formula for Multiresolution Bitmap is
a crude extrapolation based on data of [3].)

Distributing or parallelizing the algorithm is trivial: it suffices to have dif-
ferent processors (sharing the same hash function) operate on different slices of
the data and then “max–merge” their tables of registers. Optimal speed-up is
clearly attained and interprocess communication is limited to just a few kilo-
bytes. Requirements for an embedded hardware design are absolutely minimal
as only addressing, register comparisons, and integer addition are needed.
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